Review of Accelerator-based Boron Neutron Capture Therapy Machines

نویسنده

  • M. Yoshioka
چکیده

Accelerator-based BNCT (Boron Neutron Capture Therapy) facilities are being studied, developed and constructed at many laboratories and hospitals, especially in Japan. In order to provide sufficient neutron flux in the epi-thermal energy region (0.5 ~ 10 keV), an intense proton beam accelerated with a cyclotron, linear accelerator (linac) or DC accelerator up to 2.5 ~ 30 MeV is directed to lithium or beryllium targets to produce neutrons. The neutrons produced have an energy ranging from several hundred keV ~ 28 MeV, depending on the primary proton beam energy and target material, this neutron energy must be degraded to the epithermal region with a moderator system. The boron delivery drug system, patient treatment and radiation exposure planning can be the same as with conventional reactor-based BNCT. In this paper I will review the various possible technology choices being made by current projects in Japan.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Simulation of Photoneutron Source by MCNPX Monte Carlo Code for Boron Neutron Capture Therapy

Introduction Electron linear accelerator (LINAC) can be used for neutron production in Boron Neutron Capture Therapy (BNCT). BNCT is an external radiotherapeutic method for the treatment of some cancers. In this study, Varian 2300 C/D LINAC was simulated as an electron accelerator-based photoneutron source to provide a suitable neutron flux for BNCT. Materials and Methods Photoneutron sources w...

متن کامل

Impacts of multiple-field irradiation and boron concentration on the treatment of boron neutron capture therapy for non-small cell lung cancer

Background: Boron neutron capture therapy (BNCT) is a radiotherapy that combines biological targeting and high linear energy transfer. A potential therapeutic approach for non-small cell lung cancer (NSCLC) is considered. However, dose in lung tumor is not homogeneous, and it will reduce the effect of BNCT treatment. In order to improve the dose distribution of BNCT, the multi-field irradiation...

متن کامل

Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy

Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measu...

متن کامل

Plant-Based Calcium Fructoborate as Boron-Carrying Nanoparticles for Neutron Cancer Therapy

Boron neutron capture therapy (BNCT) is an effective clinical method in cancer treatment based on fission reactions and nuclear capturing. In this method, use of the best boron-containing agents for boron therapy and boron delivery agent for transfer to the infectious site are the key points for  efficienct treatment. Our research indicated that calcium fructoborate(CF) was the best compound as...

متن کامل

10B Concentration, Phantom Size and Tumor Location Dependent Dose Enhancement and Neutron Spectra in Boron Neutron Capture Therapy

Background: The amount of average dose enhancement in tumor loaded with 10B may vary due to various factors in boron neutron capture therapy.Objective: This study aims to evaluate dose enhancement in tumor loaded with 10B under influence of various factors and investigate the dependence of this dose enhancement on neutron spectra changes.Material and Methods: In this simulation stud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016